什么是寄生效應(yīng)?功率級(jí)寄生效應(yīng)詳解-KIA MOS管
信息來(lái)源:本站 日期:2023-07-25
寄生效應(yīng):就是本來(lái)沒(méi)有在那個(gè)地方設(shè)計(jì)電容或電感甚至電阻,然而因?yàn)槟承┮蛩厝缃Y(jié)構(gòu)之間、PCB布線、管腳引線、通孔質(zhì)量、焊盤(pán)到地距離、焊盤(pán)到電源平面距離、和焊盤(pán)到印制線之間、材料差異、器件封裝、封裝引腳和印制線過(guò)長(zhǎng)等,特別是在高速電路中而表現(xiàn)出來(lái)的呈容性、感性、阻性。DC/DC轉(zhuǎn)換器中半導(dǎo)體器件的高頻開(kāi)關(guān)特性是主要的傳導(dǎo)和輻射發(fā)射源。
在電磁干擾(EMI)測(cè)試期間,如果將總噪聲測(cè)量結(jié)果細(xì)分為DM 和CM噪聲分量,可以確定DM和CM兩種噪聲各自所占的比例,從而簡(jiǎn)化 EMI 濾波器的設(shè)計(jì)流程。高頻下的傳導(dǎo)發(fā)射主要由 CM 噪聲產(chǎn)生,該噪聲的傳導(dǎo)回路面積較大,進(jìn)一步推動(dòng)輻射發(fā)射的產(chǎn)生。
文章將全面介紹降壓穩(wěn)壓器電路中影響 EMI 性能和開(kāi)關(guān)損耗的感性和容性寄生元素。通過(guò)了解相關(guān)電路寄生效應(yīng)的影響程度,可以采取適當(dāng)?shù)拇胧⒂绊懡抵磷畹筒p少總體 EMI 信號(hào)。
檢驗(yàn)具有高轉(zhuǎn)換率電流的關(guān)鍵回路
根據(jù)電源原理圖進(jìn)行電路板布局時(shí),其中一個(gè)重要環(huán)節(jié)是準(zhǔn)確找到高轉(zhuǎn)換率電流(高 di/dt)回路,同時(shí)密切關(guān)注布局引起的寄生或雜散電感。這類電感會(huì)產(chǎn)生過(guò)大的噪聲和振鈴,導(dǎo)致過(guò)沖和地彈反射。
圖 1 中的功率級(jí)原理圖顯示了一個(gè)驅(qū)動(dòng)高側(cè)和低側(cè) MOSFET(分別為 Q1 和 Q2)的同步降壓控制器。以 Q1 的導(dǎo)通轉(zhuǎn)換為例。在輸入電容 CIN 供電的情況下,Q1 的漏極電流迅速上升至電感電流水平,與此同時(shí),從 Q2 的源極流入漏極的電流降為零。
MOSFET 中紅色陰影標(biāo)記的回路和輸入電容(圖 1 中標(biāo)記為“1”)是降壓穩(wěn)壓器的高頻換向功率回路或“熱”回路 。功率回路承載著幅值和 di/dt 相對(duì)較高的高頻電流,特別是在 MOSFET 開(kāi)關(guān)期間。
圖 1:具有高轉(zhuǎn)換率電流的重要高頻開(kāi)關(guān)回路
圖1中的回路“2”和“3”均歸類為功率 MOSFET 的柵極回路。具體來(lái)說(shuō),回路 2 表示高側(cè) MOSFET 的柵極驅(qū)動(dòng)器電路(由自舉電容 CBOOT 供電)?;芈?3 表示低側(cè) MOSFET 柵極驅(qū)動(dòng)器電路(由 VCC 供電)。這兩條回路中均使用實(shí)線繪制導(dǎo)通柵極電流路徑,以虛線繪制關(guān)斷柵極電流路徑。
寄生組分和輻射 EMI
EMI 問(wèn)題通常涉及三大要素:干擾源、受干擾者和耦合機(jī)制。干擾源是指 dv/dt 和/或 di/dt 較高的噪聲發(fā)生器,受干擾者指易受影響的電路(或 EMI 測(cè)量設(shè)備)。
耦合機(jī)制可分為導(dǎo)電和非導(dǎo)電耦合。非導(dǎo)電耦合可以是電場(chǎng)(E 場(chǎng))耦合、磁場(chǎng)(H 場(chǎng))耦合或兩者的組合 - 稱為遠(yuǎn)場(chǎng) EM 輻射。近場(chǎng)耦合通常由寄生電感和電容引起,可能對(duì)穩(wěn)壓器的 EMI 性能起到?jīng)Q定性作用,影響顯著。
功率級(jí)寄生電感
功率MOSFET 的開(kāi)關(guān)行為以及波形振鈴和 EMI 造成的后果均與功率回路和柵極驅(qū)動(dòng)電路的部分電感相關(guān)。圖 2 綜合顯示了由元器件布局、器件封裝和印刷電路板(PCB)布局產(chǎn)生的寄生元素,這些寄生元素會(huì)影響同步降壓穩(wěn)壓器的 EMI 性能。
圖 2:降壓功率級(jí)和柵極驅(qū)動(dòng)器的“剖析原理圖”(包含感性和容性寄生元素)
有效高頻電源回路電感(LLOOP)是總漏極電感(LD)、共源電感(LS)(即輸入電容和 PCB 走線的等效串聯(lián)電感(ESL))和功率 MOSFET 的封裝電感之和。按照預(yù)期,LLOOP 與輸入電容 MOSFET 回路(圖 1 中的紅色陰影區(qū)域)的幾何形狀布局密切相關(guān)。與此同時(shí),柵極回路的自感 LG 由 MOSFET 封裝和 PCB 走線共同產(chǎn)生。
從圖 2 中可以看出,高側(cè) MOSFET Q1 的共源電感同時(shí)存在于電源和柵極回路中。Q1 的共源電感產(chǎn)生效果相反的兩種反饋電壓,分別控制 MOSFET 柵源電壓的上升和下降時(shí)間,因此降低功率回路中的 di/dt。然而,這樣通常會(huì)增加開(kāi)關(guān)損耗,因此并非理想方法。
功率級(jí)寄生電容
寄生電容一般是指電感電阻,芯片引腳等在高頻情況下表現(xiàn)出來(lái)的電容特性實(shí)際上,一個(gè)電阻等效于一個(gè)電容,一個(gè)電感,和一個(gè)電阻的串連在低頻情況下表現(xiàn)不是很明顯而在高頻情況下,等效值會(huì)增大不能忽略在計(jì)算中我們要考慮進(jìn)去ESL就是等效電感ESR就是等效電阻不管是電阻電容,電感,還是二極管,三極管,MOS管,還有IC,在高頻的情況下我們都要考慮到它們的等效電容值電感值。
公式 1 為影響 EMI 和開(kāi)關(guān)行為的功率 MOSFET 輸入電容、輸出電容和反向傳輸電容三者之間的關(guān)系表達(dá)式(以圖 2 中的終端電容符號(hào)表示)。在 MOSFET 開(kāi)關(guān)轉(zhuǎn)換期間,這種寄生電容需要幅值較高的高頻電流。
公式 2 的近似關(guān)系表達(dá)式表明,COSS 與電壓之間存在高度非線性的相關(guān)性。公式3給出了特定輸入電壓下的有效電荷 QOSS,其中 COSS-TR 是與時(shí)間相關(guān)的有效輸出電容,與部分新款功率 FET 器件的數(shù)據(jù)表中定義的內(nèi)容一致。
圖2中的另一個(gè)關(guān)鍵參數(shù)是體二極管 DB2 的反向恢復(fù)電荷(QRR),該電荷導(dǎo)致 Q1 導(dǎo)通期間出現(xiàn)顯著的電流尖峰。QRR取決于許多參數(shù),包括恢復(fù)前的二極管正向電流、電流轉(zhuǎn)換速度和芯片溫度。
一般來(lái)說(shuō),MOSFET QOSS 和體二極管 MOSFET QOSS 會(huì)為分析和測(cè)量過(guò)程帶來(lái)諸多難題。在 Q1導(dǎo)通期間,為Q2的 COSS2 充電的前沿電流尖峰和為 QRR2 供電以恢復(fù)體二極管 DB2前沿電流尖峰具有類似的曲線圖,因此二者常被混淆。
聯(lián)系方式:鄒先生
聯(lián)系電話:0755-83888366-8022
手機(jī):18123972950
QQ:2880195519
聯(lián)系地址:深圳市福田區(qū)金田路3037號(hào)金中環(huán)國(guó)際商務(wù)大廈2109
請(qǐng)搜微信公眾號(hào):“KIA半導(dǎo)體”或掃一掃下圖“關(guān)注”官方微信公眾號(hào)
請(qǐng)“關(guān)注”官方微信公眾號(hào):提供 MOS管 技術(shù)幫助
免責(zé)聲明:本網(wǎng)站部分文章或圖片來(lái)源其它出處,如有侵權(quán),請(qǐng)聯(lián)系刪除。